解答 • 解説

[4]

(1) 辺BE, 辺CDの中点をそれぞれM, Nとし, 平面AMFN(対称な平面)

を取り出して考える。

球 O_1 , O_2 が交わってできる 円の直径をGHとし、円の中心を I とおく。

$$\mbox{G I} = 4\sqrt{6} \times \frac{1}{2} = 2\sqrt{6} \, (\mbox{cm}) \, \mbox{\sharp \emptyset} \, , \label{eq:Gaussian}$$

 $\triangle O_1G$ I で三平方の定理を用いて、

O₁ I =
$$\sqrt{6^2 - (2\sqrt{6})^2} = 2\sqrt{3}$$
 (cm) ···(答)

(2) $\triangle ABEは正三角形なので、$

 $AM : MN = \sqrt{3} : 2$

よって、 $AM:MI=\sqrt{3}:1$ となるので、

 \triangle AMIは1: $\sqrt{2}$: $\sqrt{3}$ の直角三角形である。 ここで、 \triangle AO₁P \sim \triangle AMI より、

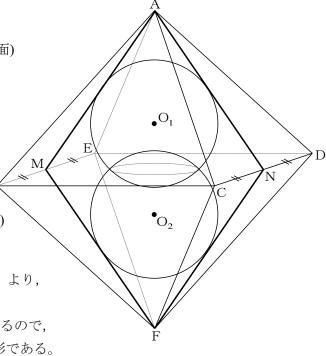
 $AO_1=6\times\sqrt{3}=6\sqrt{3}$ (cm) となるので、

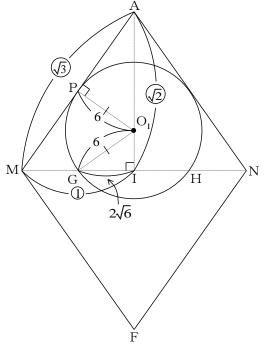
A I = $6\sqrt{3} + 2\sqrt{3} = 8\sqrt{3}$ (cm)

したがって、正八面体の1辺の長さは

MNに等しいので,

$$8\sqrt{3} \times \frac{1}{\sqrt{2}} \times 2 = 8\sqrt{6}$$
 (cm) …(答)





(3) (2) \(\mathcal{L} \) \(\mathcal{V} \) \(\mathcal{A} \mathcal{M} = 8\sqrt{3} \times \frac{\sqrt{3}}{\sqrt{2}} = 12\sqrt{2} \) (cm),

 $AP=6 \times \sqrt{2}=6\sqrt{2}$ (cm) より, 点PはAMの中点である。

よって、点Pを通り \triangle ACDに 平行な平面で正八面体を切断した とき、切り口は右の図のような 正六角形となる。

M

$$O_1 K = 2\sqrt{3} \times \frac{1}{\sqrt{3}} = 2 (cm),$$

I K =
$$2\sqrt{3} \times \frac{\sqrt{2}}{\sqrt{3}} = 2\sqrt{2}$$
 (cm)

ここで、 $\triangle O_1 P K$ で三平方の定理を 用いて、 $P K = \sqrt{6^2 - 2^2} = 4\sqrt{2}$ (cm) よって、球 O_2 と $\triangle F C D$ の接点をQ、 球 O_1 の切断面の直径をP R とすると 2 つの球 O_1 , O_2 の切断面は右下の図の ようになる。

PK=KR= $4\sqrt{2}$ (cm) より,点 I は KRの中点で、2 つの円の交点を それぞれ S, Tとすると、 SK= $4\sqrt{2}$ cm, K I = $2\sqrt{2}$ cm なので \triangle SK I は $1:2:\sqrt{3}$ の三角定規形である。

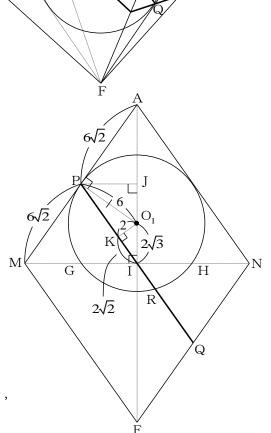
立ちKTはT.2. $\sqrt{3}$ の二角足焼形である。 したがって、STより左側にある部分の 面積は、(おうぎ形KSPT)+ \triangle SKT で 求められ、ST= $2\sqrt{2} \times \sqrt{3} \times 2 = 4\sqrt{6}$ より、

$$(4\sqrt{2})^2 \times \pi \times \frac{2}{3} + 4\sqrt{6} \times 2\sqrt{2} \times \frac{1}{2}$$

$$=\frac{64}{3}\pi+8\sqrt{3}$$

以上より, 求める部分の面積は,

$$\left(\frac{64}{3}\pi + 8\sqrt{3}\right) \times 2 = \frac{128}{3}\pi + 16\sqrt{3} \text{ (cm}^2) \cdots \text{(}^2)$$



 $^{\bullet}$ O₂

